d-Complete Posets Generalize Young Diagrams for the Jeu de Taquin Property

نویسنده

  • Robert A. Proctor
چکیده

The jeu de taquin process produced a standard Young tableau from a skew standard Young tableau by shifting its entries to the northwest. We generalize this process to posets: certain partial numberings of any poset are shifted upward. A poset is said to have the jeu de taquin property if the numberings resulting from this process do not depend upon certain choices made during the process. Young diagrams are the posets which underlie standard Young tableaux. These posets have the jeu de taquin property. d-Complete posets are posets which satisfy certain local structual conditions. They are mutual generalizations of Young diagrams, shifted Young diagrams, and rooted trees. We prove that all d-complete posets have the jeu de taquin property. The proof shows that each d-complete poset actually has the stronger "simultaneous" property; this may lead to an algebraic understanding of the main result. A partial converse is stated: "Non-overlapping" simultaneous posets are d-complete.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A bijective proof of the hook-content formula for super Schur functions and a modified jeu de taquin

A bijective proof of the product formula for the principal specialization of super Schur functions (also called hook Schur functions) is given using the combinatorial description of super Schur functions in terms of certain tableaux due to Berele and Regev. Our bijective proof is based on the Hillman–Grassl algorithm and a modified version of Schützenberger’s jeu de taquin. We then explore the ...

متن کامل

Cyclic sieving of increasing tableaux and small Schröder paths

An increasing tableau is a semistandard tableau with strictly increasing rows and columns. It is well known that the Catalan numbers enumerate both rectangular standard Young tableaux of two rows and also Dyck paths. We generalize this to a bijection between rectangular 2-row increasing tableaux and small Schröder paths. Using the jeu de taquin for increasing tableaux of [Thomas–Yong ’09], we t...

متن کامل

A Jeu De Taquin Theory for Increasing Tableaux, with Applications to K-theoretic Schubert Calculus

We introduce a theory of jeu de taquin for increasing tableaux, extending fundamental work of [Schützenberger ’77] for standard Young tableaux. We apply this to give a new combinatorial rule for the K-theory Schubert calculus of Grassmannians via K-theoretic jeu de taquin, providing an alternative to the rules of [Buch ’02] and others. This rule naturally generalizes to give a conjectural root-...

متن کامل

A 'Nice' Bijection for a Content Formula for Skew Semistandard Young Tableaux

Based on Schützenberger’s evacuation and a modification of jeu de taquin, we give a bijective proof of an identity connecting the generating function of reverse semistandard Young tableaux with bounded entries with the generating function of all semistandard Young tableaux. This solves Exercise 7.102 b of Richard Stanley’s book ‘Enumerative Combinatorics 2’.

متن کامل

Bijective Combinatorics of Reduced Decompositions

We study the bijective combinatorics of reduced words. These are fundamental objects in the study of Coxeter groups. We restrict our focus to reduced words of permutations and signed permutations. Our results can all be situated within the context of two parallels. The first parallel is between the enumerative theory of reduced words and that of Coxeter group elements. The second parallel is be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006